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Abstract

A theoretical framework for analyzing low-energy impacts of laminated shells with active and sensory piezoelectric

layers is presented, including impactor dynamics and contact law. The formulation encompasses a coupled piezoelectric

shell theory mixing first order shear displacement assumptions and layerwise variation of electric potential. An exact in-

plane Ritz solution for the impact of open cylindrical piezoelectric–composite shells is developed and solved numeri-

cally using an explicit time integration scheme. The active impact control problem of adaptive cylindrical shells with

distributed curved piezoelectric actuators is addressed. The cases of optimized state feedback controllers and output

feedback controllers using piezoelectric sensors are analyzed. Numerical results quantify the impact response of cy-

lindrical shells of various curvatures including the signal of curved piezoelectric sensors. Additional numerical studies

quantify the impact response of adaptive cylindrical panels and investigate the feasibility of actively reducing the impact

force. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Smart structures that can sense and adapt to changes in their loads and environment are highly desirable
since they provide, among other things, new opportunities and flexibility in designing damage tolerant and
stable structures. Such opportunities exist in the critical area of developing impact tolerant composite
structures. Foreign object impacts are common threats to many structural applications, increasing the
safety risk and reducing the effectiveness and reliability of composite structures as primary loading
members. Impacts are complex events, and depending on the impactor/structure characteristics and in-
teractions, the resulting damage may be either visible or hidden. Therefore, adaptive piezoelectric laminates
with embedded piezoelectric sensors and actuators may be good candidates for monitoring or even shaping
the impact event, leading to better damage resistance, impact parameter identification and damage
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assessment. This paper addresses the development of an analytical method for quantifying the response
of adaptive piezoelectric–composite shells in low-energy impacts.

In general, the impact of composite structures has received a lot of attention in recent years. Analytical,
computational, experimental and combined studies have utilized simple structures, such as beams, plate
and shells to investigate impact response and damage. Beams and plates have received most of the attention
(see e.g., Sankar and Sun (1985), Cairns and Lagace (1989), Qian and Swanson (1990), Christoforou and
Swanson (1991), Prasad et al. (1994), Yigit and Christoforou (1995), Pierson and Vaziri (1996) and
Christoforou and Yigit (1998a)), while less effort seems to have been directed towards shells, mainly be-
cause of the added complexity in the field equations (see e.g., Christoforou and Swanson (1990), Swanson
et al. (1991), Vaziri et al. (1996) and Matemilola and Stronge (1997)). On the other hand, substantial effort
has been directed towards the mechanics of piezoelectric–composite laminates and structures and the study
of their dynamic response (see e.g., the reviews by Sunar and Rao (1999) and Saravanos and Heyliger
(1999)), as well as, the active vibration and shape control with adaptive piezoelectric structures (see e.g., Baz
and Poh (1988), Tzou and Tseng (1990), Chantrashekhara and Agarwal (1993), Kokonis et al. (1994),
Abramovich (1998), Ray (1998) and Liu et al. (1999)).

Yet, the impact of smart structures has received minimal attention. Work has been reported mainly in
impact load identification by Choi and Chang (1996) and Tracy and Chang (1998), in the reduction of impact
stresses using shape memory alloys by Birman et al. (1997), in active control of blast-loaded piezoelectric
beams by Librescu and Na (1998), and in the impact control of plates using concentrated force actuators by
Yigit and Christoforou (2000). Saravanos and Christoforou (2000) investigated the impact response of
adaptive piezoelectric laminated plates using an exact Ritz model with a coupled piezoelectric laminate
theory. Among other things, it was demonstrated that for moderate to heavy mass impacts, the use of
optimized linear quadratic regulator (LQR) or sensory feedback controllers could reduce the impact force.

As mentioned previously, piezoelectric–composite laminates may be good candidates for detecting and
monitoring the impact event in composite shell structures. Effective achievement of this task requires pi-
ezoelectric laminate mechanics that can accurately model the full electromechanical response of the shell, as
well as, provide insight into the impact event. This paper extends the previous work to composite shells with
distributed piezoelectric sensors and actuators. While the basic approach is seemingly similar, the devel-
opment of mechanics and models for analyzing the impact of adaptive piezoelectric shells involves addi-
tional challenges, because of the more involved mechanics and the extension–bending coupling effects
induced by the shell curvature on the overall characteristics of the impact event. The presence of curved
piezoelectric sensors and actuators in impacted shell structures also requires special consideration. The
present paper describes mechanics and a Ritz solution for analyzing low-energy impacts on cylindrical
piezocomposite shells with distributed actuators and sensors. Attention is mainly focused on the global
response of the impacted shell, the direct inclusion of impactor-target dynamic interactions, and the im-
plementation of a realistic contact law into the model. The work addresses ‘‘low-energy’’ impacts and does
not consider other non-linear phenomena, such as, damage initiation and propagation into the piezoelectric
laminate. However, the present mechanics establishes the theoretical framework for addressing such
complex issues in future studies. The model of the adaptive shell is subsequently formulated by integrating
the shell-impactor system with optimal state feedback or output feedback controllers for the active control
of critical impact parameters.

2. Piezoelectric shell laminate

This section briefly describes the new elements of the theoretical framework required for analyzing the
target dynamics, that is, the coupled dynamic behavior of a shell laminate with embedded piezoelectric
actuators and sensors.
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2.1. Material equations

The impact target, a curvilinear laminate consisting of composite plies and embedded piezoelectric
layers, is shown schematically in Fig. 1. Each ply of the laminate remains parallel to a reference curvilinear
surface A0. An orthogonal curvilinear coordinate system �OOngf is defined, such that the axes n and g lie on
the curvilinear reference surface A0, while axis f remains straight and perpendicular to the layers of the
laminate. Each ply is generally assumed to consist of a linear piezoelectric material with properties defined
on the orthogonal curvilinear system �OOngf, and constitutive equations of the following form,

ri ¼ CE
ijSj � eikEk

Dl ¼ eljSj þ eSlkEk
ð1Þ

where i, j ¼ 1; . . . ; 6 and k, l ¼ 1; . . . ; 3; ri and Si are the mechanical stresses and engineering strains in
vectorial notation; Ek, the electric field vector; Dl, the electric displacement vector; Cij, the elastic stiffness
tensor; elj, the piezoelectric tensor; and elk, the electric permittivity tensor of the material. The overbar
indicates quantities expressed in the curvilinear system, while superscripts E, and S indicate constant
electric field and strain conditions, respectively. The axes 1, 2, and 3 of the material are parallel to the
curvilinear axes n, g, and f, respectively. The materials are assumed to be monoclinic class 2 crystals with a
polarization axis parallel to the f axis.

Dropping the overbar in the remaining paper, the strain–displacement relationships are (Soedel, 1993;
Saravanos, 1997),

S11 ¼ S1 ¼
1

g11
u;n

 
þ
g011;g
g022

vþ g
0
11

R1
w

!

S22 ¼ S2 ¼
1

g22
v;g

 
þ
g022;n
g011

uþ g
0
22

R2
w

!

S12 ¼ S6 ¼
1

g11
v;n

 
�
g011;n
g022

u

!
þ 1

g22
u;g

 
�
g022;n
g011

v

!

S33 ¼ S3 ¼ w;f

S23 ¼ S4 ¼ v;f þ
1

g22
w;g

�
� g

0
22

R2
v
�

S13 ¼ S5 ¼ u;f þ
1

g11
w;n

�
� g

0
11

R1
u
�

ð2Þ

where u, v, w are displacements in the curvilinear system. The relation of electric field vector Ek to the
electric potential u is (Tzou and Zhong, 1993; Saravanos, 1997),

E1 ¼ � 1

g11
u;n

E2 ¼ � 1

g22
u;g

E3 ¼ �u;f

ð3Þ
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where, the components of the metric tensor are defined as,

g11 ¼ ð1þ f=R1Þg011; g22 ¼ ð1þ f=R2Þg022 ð4Þ

Ri are the local radii of curvature, and g011, g
0
22 are the metric tensor components on the surface A0 ðf ¼ 0Þ,

respectively. It is proved that the equilibrium equations are for the stresses,

ðg22r11Þ;n þ ðg11r12Þ;g þ ðg11g22r13Þ;f � g11
g022;n
g011

r22 þ g22
g011;g
g022

r12 þ g22
g011
R1

r13 � g11g22q€uu ¼ 0

ðg22r12Þ;n þ ðg11r22Þ;g þ ðg11g22r23Þ;f þ g11
g022;n
g011

r12 � g22
g011;g
g022

r11 þ g11
g022
R2

r23 � g11g22q€vv ¼ 0

ðg22r13Þ;n þ ðg11r23Þ;g þ ðg11g22r33Þ;f � g22
g011
R1

r11 � g11
g022
R2

r22 � g11g22q€ww ¼ 0

ð5Þ

and for the electric displacements,

ðg22D1Þ;n þ ðg11D2Þ;g þ ðg11g22D3Þ;f ¼ 0 ð6Þ

2.2. Laminate shell theory

The coupled piezoelectric shell theory (Saravanos, 1997) is applied to yield the generalized laminate
governing equations. The theory assumes linear displacement fields through the thickness of the laminate,
together with a layerwise electric potential field consisting of N discrete continuous segments. The dis-
placements and electric potential of the mixed-field theory take the following form,

Fig. 1. Impacted curvilinear piezoelectric laminate and coordinate systems.
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uðn; g; f; tÞ ¼ u0ðn; g; tÞ þ fbnðn; g; tÞ

vðn; g; f; tÞ ¼ v0ðn; g; tÞ þ fbgðn; g; tÞ

wðn; g; f; tÞ ¼ w0ðn; g; tÞ

uðn; g; f; tÞ ¼
XN
j¼1

ujðn; g; tÞWjðfÞ

ð7Þ

where u0, v0, w0 are the displacements on the reference surface A0, along the n, g and f axes; superscript j
indicates the points fj at the interface of each discrete layer; uj is the electric potential at each point fj; WjðfÞ
are interpolation functions; and bn, bg are the flexural rotation angles.

Shallow shells are further assumed ð1þ f=Ri ffi 1Þ. Now, in the context of Eqs. (2) and (7), the engi-
neering strains at a point of the laminate, become

Siðn; g; f; tÞ ¼ S0i ðn; g; tÞ þ fkiðn; g; tÞ; i ¼ 1; 2; 6

S3ðn; g; f; tÞ ¼ 0

Siðn; g; f; tÞ ¼ S0i ðn; g; tÞ; i ¼ 4; 5

ð8Þ

where S0 and k are the mid-strain and curvature vectors at the reference surface, defined in Appendix A.
The electric field vector, Eq. (3), also becomes,

Eiðn; g; f; tÞ ¼
XN
j¼1
Eji ðn; g; tÞWjðfÞ; i ¼ 1; 2

E3ðn; g; f; tÞ ¼
XN
j¼1
Ej3ðn; g; tÞW

j
;fðfÞ

ð9Þ

where Ej is the generalized electric field vector defined as:

Ej1 ¼ �
Uj

;n

g011
; Ej2 ¼ �

Uj
;g

g022
; Ej3 ¼ �Uj ð10Þ

2.3. Laminate dynamics

It is now possible to obtain 5þ N laminate equations of motion, by integrating Eqs. (5) and (6) through
the thickness of the laminate, describing the equilibrium of forces,
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equilibrium of moments,
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ð12Þ

and conservation of generalized electric charges,

Dm1;n
g011

þ
Dm2;g
g022

� Dm3 þ 1

g011g
0
22

ðg022;nDm1 þ g011;gDm2 Þ ¼ �g011g022D
m
3 ; m ¼ 1; . . . ;N ð13Þ

where, qA, qB, and qD are generalized densities defined in Appendix A and express the mass, mass coupling
and rotational inertia of the laminate, respectively; q3, q4, q5 are respectively the normal and shear surface
tractions. The resultant forces Ni, moments Mi, and electric displacements Dmi in the previous equations are
defined as follows:

hNi;Mii ¼ g011g
0
22

Z h

0

rih1; fidf; i ¼ 1; 2; 4; 5; 6 ð14Þ

hDm1 ;Dm2 i ¼ g011g
0
22

Z h

0

hD1;D2iWmðfÞdf

Dm3 ¼ g011g
0
22

Z h

0

D3W
m
;fðfÞdf; m ¼ 1; . . . ;N

ð15Þ

The resultant generalized constitutive relations between generalized stress and electric displacement, and
generalized strain and electric field are shown in Appendix A.

3. Cylindrical piezoelectric shells under impact

The formulation of the governing equations in the orthogonal curvilinear system and the attained
separation of the through-the-thickness integration in the equations of motion (11)–(13) enables the de-
velopment of exact structural solutions on the reference surface A0 for select geometries, laminations and
boundary conditions. Such a solution is described herein for simply supported cylindrical shells with dis-
tributed piezoelectric (piezopolymer or piezoceramic) actuators and sensors. It is assumed that all piezo-
electric layers and composite plies are orthotropic (C16 ¼ C26 ¼ e36 ¼ 0); and the axis g remains parallel to
the axis of revolution of the cylindrical shell, while axes n and f represent the hoop and radial directions
respectively, then 1=R2 ¼ g011;g ¼ g022;n ¼ 0, g022 ¼ 1, and R1; g011 remain constant over A0.

3.1. Shell dynamics

For a cylindrical piezoelectric laminate, Eqs. (11) and (12) are simplified and yield the following five
differential equations after their combination with the laminate constitutive equations:
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Similarly, the N charge conservation equations, Eq. (13), yield the following N differential equations,
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g011
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n
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þ
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Gnm11 E
m
1;n

!
þ E
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24S
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¼ �g011Qn3; n ¼ 1; . . . ;N ð17Þ
Incorporating Eqs. (A.1) and (A.2) into Eqs. (16) and (17), a coupled system of N þ 5 differential equations
with five unknown displacements fu0; v0;w0; bn; bgg and N unknown electric potentials f/1; . . . ;/Ng results.
Fundamental sets of modal solutions which exactly satisfy the coupled equations may be found for at
least one type of shells of practical interest, that is, simply supported open cylindrical panels (see Fig. 2a).
The boundary conditions are v0ðn; 0Þ ¼ v0ðn; LgÞ ¼ u0ð0; gÞ ¼ u0ðLn; gÞ ¼ w0ðn; 0Þ ¼ w0ðn; LgÞ ¼ w0ð0; gÞ ¼
w0ðLn; gÞ ¼ 0 and Ujðn; 0Þ ¼ Ujðn; LgÞ ¼ Ujð0; gÞ ¼ UjðLn; gÞ ¼ 0, and the fundamental set of solutions
satisfying exactly Eqs. (16) and (17) is,

u0ðn; g; tÞ ¼ U 0
klðtÞ cosðanÞ sinðbgÞ; v0ðn; g; tÞ ¼ V 0

klðtÞ sinðanÞ cosðbgÞ
w0ðn; g; tÞ ¼ W 0

klðtÞ sinðanÞ sinðbgÞ
bnðn; g; tÞ ¼ BnklðtÞ cosðanÞ sinðbgÞ; bgðn; g; tÞ ¼ BgklðtÞ sinðanÞ cosðbgÞ
ujðn; g; tÞ ¼ Uj

klðtÞ sinðanÞ sinðbgÞ; a ¼ kp=Ln; b ¼ lp=Lg; k; l ¼ 1; 2; 3; . . .

ð18Þ

where, subscripts k; l ¼ 1, 2, 3, . . . indicate the mode order along n and g axes respectively, and imply
summation of the mode in the total transient response of the shell; U 0

kl, V
0
kl W

0
kl, Bnkl, Bgkl, Uj

kl represent the
participation factors (or gains) of the respective mode in the total response of the shell; Ln, Lg are the di-
mensions of the panel along the cylindrical coordinate axes. Substituting the previous modal solutions into
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the generalized equations of motion (16) and (17) and collecting the coefficients, a linear dynamic system of
N þ 5 equations effectively results for each mode kl, of the following form:

½Muu�kl 0
0 0

	 

f €UUgkl
f€UUgkl

� �
þ ½Kuu�kl ½Kuu�kl

Kuu


 �
kl

½Kuu�kl

	 

fUgkl
fUgkl

� �
¼ fF ðtÞgkl

fQ3ðtÞgkl

� �
ð19Þ

where fUg ¼ fU 0; V 0;W 0; bn; bgg and U ¼ fU1; . . . ;UNg are the displacement and electric potential am-
plitude vectors of Eq. (18), fF gkl is the Fourier component of the mechanical loads vector, and fQ3gkl is the
Fourier component of the surface charge applied to the piezoelectrics. The submatrices Kuu, Kuu, Kuu and
Muu are equivalent stiffness, piezoelectric, permittivity and mass matrices, respectively, and are calculated
from the respective generalized laminate matrices (see Appendix A), for each mode kl.

Assuming the most general case, where some piezoelectric layers of the laminate will be configured as
distributed actuators (electric potential applied on both surfaces) and the remaining NP as distributed
sensors (electric potential remains free on one surface at least), the electric potential vector is subdivided in
a free or sensory component UP representing the voltage output at the sensors, and a forced or active
component UA representing the voltage imposed on the actuator layers, such that fUg ¼ fUP;UAg. After
partitioning Eq. (19), a set of two linear subsystems, with 5 and NP discrete equations respectively, results
for each mode kl of the following form (Saravanos, 1999),

Fig. 2. Cylindrical piezoelectric shells. (a) Simply supported open cylindrical panel impacted at convex side; (b) ½pP=ð0=90Þ2=0�s
laminate with two sensory layers; (c) ½ð0=90Þ2=02=ð90=0Þ2=pP=pA� laminate with sensory and active layer.
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½Muu�klf €UUklg þ ½Kuu�klfUklg þ ½KPP
uu �klfUP

klg ¼ fFklðtÞg � ½KPA
uu �klfUA

klg ð20Þ

½KPP
uu �klfUklg þ ½KPP

uu�klfUP
klg ¼ fQP

3klðtÞg ð21Þ

Eq. (21) describes the linear relationship between modal sensory signal and displacement which, depending
on electric conditions imposed on the piezoelectric surfaces, may take the two following different forms. If a
sufficiently high electric impedance is connected between the sensor surface terminals (Saravanos, 1999),
then QP

3 ðtÞ ¼ 0 and Eq. (21) takes the form,

fUP
klg ¼ �½KPP

uu�
�1
kl ½KPP

uu �klfUklg ð22Þ

that is, the sensory electric potential is directly proportional to the shell displacements. In the other extreme
case, when a sufficiently low impedance is connected between the sensor terminals, the electric permittivity
charge component becomes negligible. Time differentiation of Eq. (21), yields that in this case, the current
density iP between sensor terminals is proportional to the rate of the displacement vector,

iPkl ¼
d

dt
fQP

3klðtÞg ¼ ½KPP
uu �klf _UUklg ð23Þ

3.2. Impactor dynamics

The case of low velocity impact is considered in this work, where rate effects, damage and perforation are
neglected. Assuming the case shown in Figs. 1 and 2a where a foreign object of mass mi, traveling with low
velocity v0 along the f axis, transversely impacts the cylindrical shell at a point ðnc; gcÞ, the motion of the
impactor is described by

mi€wwiðtÞ ¼ �FiðtÞ ð24Þ
where wi is the displacement of the impactor and FiðtÞ is the concentrated impact force. The lateral load per
unit area applied to the shell is,

q3ðn; g; tÞ ¼ FiðtÞdðn � ncÞdðg � gcÞ ð25Þ
For simplicity and without any loss of generality, a linear elastic contact law is used and the impact force
FiðtÞ is assumed to be,

FiðtÞ ¼ kyaðn; g; tÞ ð26Þ
where, ky is the local contact stiffness which can be calculated from shell and impactor parameters
(Christoforou and Yigit, 1998b), and aðtÞ is the indentation defined as the relative displacement between the
impactor and the shell at the contact point ðnc; gcÞ,

aðn; g; tÞ ¼ wiðtÞ � w0ðnc; gc; tÞ if wiðtÞ � w0ðnc; gc; tÞP 0
0 if wiðtÞ � w0ðnc; gc; tÞ < 0

�
ð27Þ

The previous equations (26) and (27) may be seen as describing the effect of a spring placed between the
shell and the impactor as long as both are in contact, which spring pushes the impactor backwards and the
shell forwards with a force proportional to the impactor indentation a. The lateral shell displacement w0 is
the summation of all modal contributions as they are provided by the solution of Eqs. (20) and (21) for each
mode kl,

w0ðn; g; tÞ ¼
X
k

X
l

W 0
klðtÞ sinðaknÞ sinðblgÞ ð28Þ

The initial conditions of the impact problem are:

fUðn; g; 0Þg ¼ 0; f _UUðn; g; 0Þg ¼ 0

wið0Þ ¼ 0 _wwið0Þ ¼ v0
ð29Þ
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3.3. Stress and electric displacement calculation

Although, the mixed-field piezoelectric shell theory is primarily developed for yielding efficient and
accurate calculations of global response parameters of thin and intermediately thick shells, it entails also
capabilities of stress and electric displacement calculations at various levels of the piezoelectric shell. The
mid-strain, curvature and generalized electric field vectors at each point of the shell are provided by Eqs.
(A.1), (A.2) and (10), respectively. The in-plane and shear strains through the thickness of the piezo-
composite shell are subsequently provided by Eq. (8), while the electric field vector components are pre-
dicted by Eq. (9). Finally, local stresses and electric displacements at each through-the-thickness point of
the impacted piezolaminate may be calculated from Eq. (1).

It is pointed out, however, that neither damage propagation nor other non-linear effects are considered
in this work. Damage in impacted piezolaminates typically involves many different types of failure
mechanisms, including delaminations, and its prediction will require stress calculations provided only by
refined piezoelectric theories (see e.g., Heyliger and Saravanos (1999)). Yet, all stresses in the shell are
proportionally related to the impact force, thus, the prediction (and possible modification) of the impact
force history, will also reflect the pattern of stress variation during the impact event. The additional con-
sideration of damage propagation and penetration in the piezoelectric laminate will require rigorous and
extensive analytical and experimental developments in many areas, which significantly exceed the scope of
this study, and should be considered as topics of future work.

3.4. Numerical solution procedure

The efficient calculation of the impact response, with or without controller interaction, may require
substantial computational effort. Eqs. (20), (21) and (24) which describe the modal motion of the shell–
impactor system are effectively coupled by the non-linear contact law, Eqs. (26) and (27), thus resulting in a
coupled non-linear system potentially of large size. To overcome this, an explicit time integration scheme
(based on the central difference method) is used for the solution of the motion equations. Among other
benefits, explicit integration schemes calculate the unknown displacements at step t þ Dt using equilibrium
equations at step t, thus the contact equation (27) is effectively imposed at step t, where all modal states are
already calculated. The calculated impact force tF is then used in Eq. (20) to independently calculate each
set of modal state variables tþDtfUgkl, tþDtfUgPkl, tþDtwi of the shell–impactor system. In this manner, the
equations are numerically uncoupled, and a small set of modal motion equations is independently solved at
each time step for each mode, with obvious computational advantages.

4. Active impact control

An obvious application of piezoelectric shells may be in active impact control. In this concept, the
performance of the impacted structure may be improved by feeding back to piezoelectric actuators, either
the state variables, or the output signals of piezoelectric sensors. Impact force control rather than vibration
control is sought, as impact force is considered to be directly related to shell stresses. In this context, impact
force minimization may implicitly lead to impact damage mitigation and increased post-impact residual
strength. Thus, the development of adaptive piezoelectric shells for active impact control involves sub-
stantial differences and challenges because of the introduction of additional state variables by the impactor,
the non-linearity of the plant system, the consideration of impact force as primary control objective, and
the extension–bending coupling effect induced on actuators and sensors by the shell geometric curvature
(Eq. (2)).
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Apparently, the development of such adaptive shells and controllers may be a topic requiring substantial
effort, thus the present work should be viewed as a first attempt to investigate the feasibility of the concept.
It is interesting, therefore, to examine if the impact force may be controlled with piezoelectric actuators
using two types of control feedback: state feedback; and output feedback from piezoelectric sensors. The
possibility to design a successful controller using a simplified linear shell–impactor system is also evaluated.
The governing equations of the shell–impactor system may be cast in standard state space system form:

_xx ¼ f ðx; tÞ þ ½B�u
y ¼ ½C�x

ð30Þ

where, the first equation contains the non-linear equations of motion, as mandated by condensed Eqs. (20),
(21) and (24); the second equation describes the relation of sensory signal (output) to the state, using either
of Eq. (22) or (23). The state vector x includes the amplitudes of the modal velocities and displacements of
the shell, and of the velocity and position of the impactor x ¼ f _UU11;U11; . . . ; _UUmn;Umn; _wwi;wig; the input
vector u includes the modal voltage amplitudes applied on the active layers, u ¼ fuA11; . . . ;uAmng; and the
output vector y contains either the modal potential or the modal current density amplitudes of the sensor
layers. While the above equations describe the actual plant system, a simplified linear system is also con-
sidered for controller design purposes, with identical equations of motion, except that Eq. (27) is neglected,
i.e. a contact force is always applied on the shell irrespectively of the sign of identation a,

_xx ¼ ½A�xþ ½B�u
y ¼ ½C�x

ð31Þ

4.1. State feedback control

In this case, the input to piezoelectric actuators is proportional to the state variables,

u ¼ �½Gx�x ð32Þ

where ½Gx� is a gain matrix, describing the controller. A linear quadratic regulator (LQR) may be designed
with optimal gains, such that a performance index J with quadratic terms on the state and control effort is
minimized,

J ¼ 1

2

Z 1

0

ðxT½Q�xþ uT½R�uÞdt ð33Þ

where ½Q� and ½R� are weighting matrices. An optimal LQR provides the best closed-loop performance.
However, an LQR controller may be impractical to implement as it requires knowledge of all states, in-
cluding impactor position and velocity. The optimal gain matrix is calculated for the simplified linear plant
system (31), solving a matrix Riccati equation (see, Sage and White (1977)). This gain matrix is subse-
quently used as the controller of the actual non-linear plant system (30).

4.2. Output feedback control

In this case, the input to piezoelectric actuators is proportional to the system output, which includes only
signals from piezoelectric sensors,

u ¼ �½Gy �y ð34Þ

where ½Gy � is a proper gain matrix. While an output feedback controller is simpler to implement, its de-
velopment is usually more cumbersome. Formal development of an output feedback controller is possible
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using either a state estimator or direct prediction of an optimum gain matrix, all in connection with the
minimization of the performance index J. This paper mainly investigates the feasibility of sensory feedback
by trying simple gain matrices, whereas the formal design of an optimized output controller is left as a topic
of future work.

5. Evaluations and discussion

Numerical results and case studies are presented which evaluate the formulation and quantify the impact
response of adaptive piezoelectric shells. The response of ½pP=ð0=90Þ2=0�s Gr/Epoxy cylindrical panels of
various curvatures with symmetrically attached piezoelectric sensors is evaluated (Fig. 2b). Letter p is used
in the standard laminate notation to indicate a piezoelectric layer, either in sensory (superscript P) or in
active (superscript A) configuration. The active impact control of a ½ð0=90Þ2=02=ð90=0Þ2=pP=pA� Gr/Epoxy
shell with state and output feedback is also considered (Fig. 2c). For convenience, a common piezoceramic
material (PZT-4) was considered in all examples. All shells are impacted at the centers (n=Ln ¼ g=Lg ¼ 0:5)
of their convex surface (f ¼ þh=2) by impactors traveling perpendicularly to the surface towards the center
of curvature. The dimensions of all panels were assumed to be Ln ¼ Lg ¼ 200 mm and the thickness of each
composite ply was 0.270 mm. The material properties are shown in Table 1.

5.1. Sensory cylindrical panels

The impact response of ½pP=ð0=90Þ2=0�s Gr/Epoxy cylindrical panels with symmetrically attached piez-
oceramic (PZT-4) sensory layers (see Fig. 2b) was evaluated. The edge dimensions of all panels were as-

Table 1

Mechanical properties (e0 ¼ 8:85� 10�12 farad/m, electric permittivity of air)

Property Gr/Epoxy PZT-4

Elastic properties

E11 (GPa) 120 81.3

E22 (GPa) 7.9 81.3

E33 (GPa) 7.9 64.5

G23 (GPa) 5.5 25.6

G13 (GPa) 5.5 25.6

G12 (GPa) 5.5 30.6

v12 0.3 0.33

v13 0.3 0.43

v23 0.3 0.43

Piezoelectric coefficients (10�12 m/V)

d31 0 �122
d32 0 �122
d24 0 495

d15 0 495

Electric permittivity

e11=e0 3.5 1475

e22=e0 3.0 1475

e33=e0 3.0 1300

Mass density (kg=m3)

q 1578 7600

Contact stiffness (MN/m)

ky 12.34 12.34
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sumed to remain the same Ln ¼ Lg ¼ 200 mm, yet, the curvature (1/R1) of each panel was varied to in-
vestigate the effect of curvature on impact response. The thickness of each piezoceramic sensor layer was
0.250 mm. Various mass impactors were considered, all traveling with an initial velocity of 1 m/s.

Figs. 3–6 show impacts with a 0.5 kg impactor on panels of zero curvature (1=R1 ¼ 0 or h ¼ 0�), low
curvature (1=R1 ¼ 1:309 or h ¼ 15�), intermediate curvature (1=R1 ¼ 3:927 or h ¼ 45�) and high curvature
(1=R1 ¼ 15:708 or h ¼ 180�), respectively. Each figure presents: (a) the predicted impact force (in absolute
value), (b) the panel and impactor displacement, and (c) the sensory voltages of the inner and outer sensory
layers at the center (n=Ln ¼ g=Lg ¼ 0:5) of the panel. Clearly, the change of curvature has a profound effect
on the impact response of the panel. As the curvature of the panel increases, the impact characteristics and
impact force seem to change drastically. The multiple impacts predicted here and in subsequent cases, are
indicative of the impactor ‘‘spring-back’’ effect provided by Eqs. (26) and (27). The multiple impacts ob-
served in the panels of zero or low curvature do progressively change to a single impact of shorter duration
and higher force at the higher curvature panels. This is primarily attributed to the increase of effective
stiffness with curvature due to increased coupling between extension and flexure. The effect of stiffening is
also depicted on the reduction of shell and impactor displacements, as the panel curvature increases.
Another factor contributing to the change of impact characteristics at high curvature panels, is that higher
mode shapes, i.e. modes of shorter semi-wavelength such as ð2; 1Þ and ð3; 1Þ, appear at lower modal fre-
quencies, while the fundamental mode shape ð1; 1Þ shifts to higher ones. The shifting of higher mode shapes

Fig. 3. Impact of ½pP=ð0=90Þ2=0�s simply supported piezoelectric composite plate (1=R1 ¼ 0) by a 0.5 kg, 1 m/s impactor. (a) Impact

force, (b) displacement at center, (c) voltage at inner and outer sensor at center of panel.
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in the lower natural frequency range, also contributes to the localization of the impact in the high curvature
panels.

Figs. 3c–6c show the predicted electric potential response at the free terminals of the inner and outer
sensor (see Fig. 2b). The predicted electric potential at both sensors seems to encompass trends of both
force and displacement responses. This seems to occur irrespectively of the panel curvature. Yet, different
voltage signals will develop at the inner and outer sensors at non-zero curvatures. While both sensors
provided exactly the same voltage in the case of the flat panel ð1=R1 ¼ 0Þ as seen in Fig. 3c, the voltage
signal of the inner and outer sensor begin to take progressively different values as the panel curvature
increases (see Figs. 4c–6c). At high curvatures, the sensory signals have virtually opposite polarity. Ap-
parently, strong mid-surface extensional strains develop at non-zero curvatures as mandated by Eq. (A.1),
thus, bending and extensional strains coexist in the cylindrical laminate. The resulting non-symmetric strain
variation through the thickness, yields the non-symmetric sensory voltages shown in Figs. 4c–6c.

The previous impactor mass was selected, such that, for the plate case ð1=R1 ¼ 0Þ the impactor–structure
system will fall in the transition area between local and global (quasi-static) stiffness dominated impacts
(Christoforou and Yigit, 1998b). The effect of impactor mass on cylindrical piezoelectric shells was further
evaluated, by considering the extreme cases of heavy (5 kg) and light (0.008 kg) impactors which in the case
of the flat panel yield impacts in the global and local stiffness predominant regimes, respectively. The re-
sultant force applied by the 5 kg impactor on cylindrical panels of low, intermediate and high curvature is

Fig. 4. Impact of ½pP=ð0=90Þ2=0�s simply supported low curvature cylindrical piezoelectric composite panel (1=R1 ¼ 1:309) by a 0.5 kg, 1

m/s impactor. (a) Impact force, (b) displacement at center, (c) voltage at inner and outer sensor at center of panel.
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shown in Fig. 7. This heavy impactor produces quasi-static impacts in the case of zero and low curvature
panels. The increasing curvature of the panel has a significant effect on impact response, resulting in impact
forces having shorter duration, higher force magnitude and lower interactions between the impactor and
the shell. The sensory voltage shown in Fig. 8 seems to follow again the trend between impact force and
shell displacement, yet, the signals in the two sensors differ significantly at the higher curvature panels.

Finally, the predicted impact force in the case of a light mass (0.008 kg) impactor is shown in Fig. 9.
Single impacts of short duration were predicted for all curvatures and the effect of curvature on the impact
force was minor. These impacts are mostly controlled by the local stiffness coefficient ky which was assumed
to be independent of the curvature at the point of contact, whereas, the participation of the global shell
stiffness is rather insignificant. The sensory signal, mostly followed the transient displacement of the shell.
The effect of curvature and through-thickness sensor position on sensory voltage, although not shown, was
found to be significant as in the case of heavier mass impacts.

Overall, the previous results have shown that the signal of the piezoelectric sensors may be good indi-
cators of force and shell deflection. Yet, all results have shown strong interdependence between sensory
signals and shell curvature suggesting that both interpretation and use of sensory signals in shell structures
may require special consideration, thus, highlighting the value of the present formulation. Finally, the
predicted high sensory signals suggest that a wide variety of piezoelectric materials with lower piezoelectric

Fig. 5. Impact of ½pP=ð0=90Þ2=0�s simply supported intermediate curvature cylindrical piezoelectric composite panel (1=R1 ¼ 3:927) by a

0.5 kg, 1 m/s impactor. (a) Impact force, (b) displacement at center, (c) voltage at inner and outer sensor at center of panel.
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stress coefficients may be used as sensors, among them piezopolymers (i.e. PVDF) which exhibit superior
impact toughness and shape conformity.

Fig. 6. Impact of ½pP=ð0=90Þ2=0�s simply supported high curvature cylindrical piezoelectric composite panel (1=R1 ¼ 15:708) by a 0.5

kg, 1 m/s impactor. (a) Impact force, (b) displacement at center, (c) voltage at inner and outer sensor at center of panel.

Fig. 7. Impact force on ½pP=ð0=90Þ2=0�s simply supported cylindrical piezoelectric composite panels of various curvatures, impacted by
a heavy (5 kg, 1 m/s) impactor.
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5.2. Active impact control

The active impact control of ½ð0=90Þ2=02=ð90=0Þ2=pP=pA� Gr/Epoxy shells impacted by a 0.5 kg impactor
at the center of their outer (convex) surface was studied (see Fig. 2c). A 0.125 mm sensor and 0.250 mm
actuator layer were attached at the inner (concave) surface of the shell. For simplicity, the system response
was approximated using the first 3� 3 mode shapes. The equations of motion and the rotations were
further condensed to the three modal displacements, fUgkl ¼ fU 0; V 0;W 0gkl, by assuming negligible ro-
tational inertias. Only the odd modes ð1; 1Þ, ð1; 3Þ, ð3; 1Þ and ð3; 3Þ are excited by the impactor force, thus,
the shell–impactor system effectively involved 26 state variables, of which 24 describe the modal velocities
and deflections of the shell. The system inputs were the amplitudes of the modal electric potential applied to
the active layer, u ¼ fuA

11;u
A
13;u

A
31;u

A
33g. The amplitudes of the electric potential at the the free sensor

terminal were the system output.

5.2.1. Optimal state-feedback control
An optimal LQR controller was designed using the simplified linear system (Eq. (31)) of the previous

model. The weighting matrices ½Q� that were used, had the form xT½Q�x ¼ c1ð _ww0 � _wwiÞ2 þ c2ðw0 � wiÞ2,

Fig. 8. Sensory voltage at inner and outer sensor at the center of cylindrical ½pP=ð0=90Þ2=0�s simply supported panels impacted by a

heavy (5 kg, 1 m/s) impactor. (a) Low curvature 1=R1 ¼ 1:309, (b) high curvature (1=R1 ¼ 15:708).

Fig. 9. Impact force on ½pP=ð0=90Þ2=0�s simply supported cylindrical piezoelectric composite panels of various curvatures, impacted by
a light (0.008 kg, 1 m/s) impactor.
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where the first quadratic term represents a measure of the rate of indentation (and also, of the momentum
difference between shell and impactor), while the second term is a measure of indentation (and also of the
impact force). The weighting matrix [R] on the control effort term was set to be a unity matrix. Optimal
feedback gain matrices [K�

x ] were calculated for the linear system (31) and were subsequently used as the
controller of the actual non-linear system (30). The maximum values of c1 and c2 were selected such that the
modal amplitudes of actuator input remained approximately within the �250 V range.

Fig. 10 shows the reduction of impact force in a low curvature shell ð1=R1 ¼ 1:309 or h ¼ 15�Þ obtained
with optimal LQR controllers attempting to minimize either the rate of indentation, or the impact force for
the duration of the impact. For minimal rate of indentation (controller LQR1), the weighting matrix ½Q�
corresponded to weighting factors c1 ¼ 300� 103 and c2 ¼ 0, while for minimal impact force (controller
LQR2) the factors c1 ¼ 0 and c2 ¼ 300� 103 were used. Clearly both controllers have obtained significant
reductions in the impact force. Fig. 11 shows the corresponding shell and impactor displacement for the
shell, (a) without control and (b) with LQR2. The reduction of impact force was primarily obtained by
eliminating the contribution of higher modes, thus obtaining smoother contact between shell and impactor.
Fig. 12 shows the impact force for an intermediate curvature shell ð1=R1 ¼ 3:927 or h ¼ 45�Þ with LQR
controllers designed with identical weighting matrices ½Q� as in the previous example. The controlled panels
have reduced the impact force, however, the reduction is smaller than the previous case. As seen in Fig. 13,

Fig. 10. Impact force of actively controlled ½ð0=90Þ2=02=ð90=0Þ2=pP=pA� low curvature cylindrical piezoelectric composite panels

(1=R1 ¼ 1:309) with various controllers. 0.5 kg, 1 m/s impactor.

Fig. 11. Displacements of an actively controlled ½ð0=90Þ2=02=ð90=0Þ2=pP=pA� low curvature cylindrical piezoelectric composite panels

(1=R1 ¼ 1:309). (a) Without controller interaction, (b) with state feedback (LQR2) controller. 0.5 kg, 1 m/s impactor.
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the elimination of higher mode contributions continued to be the mechanism for reducing the impact force.
The participation of higher modal shapes in the impact, as well as the more localized nature of the impact
due to membrane stiffening, have both reduced the effectiveness of the active layer.

5.2.2. Output feedback control
The feasibility of an output feedback controller was also investigated. The system output was considered

to be the modal current densities of the piezoelectric sensor (Eq. (23)), y ¼ ðiP11; iP13; iP31; iP33Þ. A diagonal
matrix of uniform gains ½Ky � ¼ diagðk; . . . ; kÞ was tried with k ¼ 50. The resultant impact forces are shown
respectively in Figs. 10 and 12, for both shells. In both cases, the results illustrate the feasibility to reduce
impact force using direct sensor feedback to the piezoelectric actuators. Moreover, the obtained reductions
seem comparable with those obtained by the LQR controllers.

Overall, the previous case studies have shown the feasibility, but also the limitations, of active impact
control in adaptive shells of low and intermediate curvatures for medium mass impactors (impacts in the
local–global transitional area) using piezoceramic actuators. An emerging issue now is the capability of
piezoelectric actuators to survive the impact event; this may be addressed in the future either by proper

Fig. 12. Impact force of actively controlled ½ð0=90Þ2=02=ð90=0Þ2=pP=pA� intermediate curvature cylindrical piezoelectric composite

panels (1=R1 ¼ 3:927) with various controllers. 0.5 kg, 1 m/s impactor.

Fig. 13. Displacements of an actively controlled ½ð0=90Þ2=02=ð90=0Þ2=pP=pA� intermediate curvature cylindrical piezoelectric composite
panels (1=R1 ¼ 3:927). (a) Without controller interaction, (b) with state feedback (LQR1) controller. 0.5 kg, 1 m/s impactor.
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piezoelectric material selection and development, or by proper actuator placement. In both cases, the value
of the present method in predicting the impact response and configuring and optimizing the elements of an
adaptive piezoelectric shell is obvious.

6. Summary

The theoretical framework for analyzing low-energy impacts on laminated shells of double curvature
with distributed piezoelectric actuator and sensor layers were formulated, including impactor dynamics and
contact law. The formulation encompasses a coupled piezoelectric shell theory with first order shear ki-
nematic assumptions for displacements and layerwise electric potential variation. Exact in-plane Ritz
solutions were formulated for analyzing the impact of open cylindrical piezoelectric–composite shells.
Although the modal shell equations are physically coupled by the contact law, the modal equations of
motion where numerically decoupled and solved using explicit time integration. The active impact control
problem using piezoelectric actuators was also addressed using either an optimized state feedback con-
troller proposed to be designed based on simplified linear dynamics of the shell–impactor, or output
feedback from piezoelectric sensors.

Numerical results for the impact response of cross-ply graphite/epoxy simply supported shells of various
curvatures with surface bonded piezoceramic sensors were presented. Impact force, displacement and
sensor responses were predicted. Various mass impactors were also studied. Among other things, the results
have shown the significant dependence of impact force and sensory voltage on shell curvature. As the
curvature increased, there was a clear trend for formation of single impacts with ‘‘sinusoidal’’ impact force
patterns. In all cases the sensory voltage seemed to provide an indication of impact force trajectory, yet, the
sign and magnitude of sensory voltage were strongly related to the shell curvature. The feasibility of active
impact control was also studied. It was predicted that for at least medium mass impactors (local–global
transition), impact force reductions may be attained in shells of low and intermediate curvature using
piezoelectric actuators with LQR state feedback controllers or output feedback controllers based on pi-
ezoelectric sensor current. The output controller yielded comparable force reductions to the optimal LQR
controller. The case studies have shown the feasibility, but also the limitations, of active impact control in
adaptive shells of low and intermediate curvatures. Overall, the results have demonstrated the capabilities
of the developed mechanics and analytical models to quantifying the impact response of adaptive cylin-
drical piezoelectric composite shells. Future studies may directly quantify the effect of impact force re-
duction on impact energy absorption, damage mitigation and post impact residual strength of adaptive
piezoelectric shells.

Appendix A

Generalized laminate strain and curvature,
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Generalized constitutive laminate equations,

Ni ¼ AijS0j þ Bijk0j �
XN
m¼1

E
m
3iE

m
3 ; i; j ¼ 1; 2; 6

Ni ¼ AijS0j �
XN
m¼1

E
m
ikE

m
k ; i; j ¼ 4; 5 k ¼ 1; 2

Mi ¼ BijS0j þ Dijk0j �
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ÊEm3iE
m
3 ; i; j ¼ 1; 2; 6

ðA:3Þ

Dmi ¼ E
m
ijS

0
j þ

XN
n¼1

Gmnii E
n
i ; i ¼ 1; 2; j ¼ 4; 5

Dm3 ¼ E3jS0j þ ÊE3jk0j þ
XN
n¼1

Gmn33 E
n
3; j ¼ 1; 2; 6

ðA:4Þ

Equivalent laminate stiffness matrices [A], [B], and [D],

hAij;Bij;Diji ¼ g011g
0
22

XL
l¼1

Z flþ1

fl

Cijh1; f; f2idf; i; j ¼ 1; 2; 6

Aij ¼ g011g
0
22

XL
l¼1

Z flþ1

fl

Cij df; i; j ¼ 4; 5;

ðA:5Þ

piezoelectric laminate matrices [Em] overbar and overhat,

hEmij ; ÊEmiji ¼ g011g
0
22

XL
l¼1

Z flþ1

fl

eijW
m
;fðfÞh1; fidf; i ¼ 3; j ¼ 1; 2; 6

E
m
ij ¼ g011g

0
22

XL
l¼1

Z flþ1
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eijW
mðfÞdf; i ¼ 1; 2; j ¼ 4; 5

ðA:6Þ

and matrices of electric permittivity [Gmn],

Gmnii ¼ g011g
0
22

XL
l¼1

Z flþ1

fl

eiiW
mðfÞWnðfÞdf

Gmn33 ¼ g011g
0
22

XL
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e33W
m
;fðfÞWn

;fðfÞdf

ðA:7Þ

where, L is the number of plies in the laminate.
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Generalized densities qA, qB, qD expressing the mass, mass coupling and rotational inertia of the lami-
nate, respectively,

hqA; qB; qDi ¼ g011g
0
22

XL
l¼1

Z flþ1

fl

qlh1; f; f2idf ðA:8Þ
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